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Where Have the Persons Gone? – An Illustration of
Individual Score Methods in Autoregressive Panel

Models

Katinka Hardt,1 Martin Hecht,1 Johan H. L. Oud,2 and Manuel C. Voelkle1,3
1Humboldt-Universität zu Berlin
2Radboud University Nijmegen

3Max Planck Institute for Human Development

Much effort has been made to develop models for longitudinal data analysis, but comparably
less attention has been paid to the use of individual specific values on latent variables in
longitudinal models. In a tutorial style, this article introduces the reader to four common
approaches to obtain individual scores – individual mean score, Bartlett method, regression
method, Kalman filter – and reviews criteria commonly used to evaluate their performance.
By means of simulated data, we mimic realistic scenarios and investigate in how far analytic
results on the asymptotic performance of individual scores translate into practical situations.
We end this article with a discussion of the use and usefulness of individual scores.

Keywords: longitudinal autoregressive models, individual diagnostics, individual scores
(factor scores, sum score), Kalman filter

Where have the persons gone in longitudinal research? Many
times, they disappear by being subsumed under averages or
coefficients of variation. In psychology, averages or coefficients
of variation are used to describe empirical data and to test
theories about populations. But what if we are interested in the
development of one particular individual from such a popula-
tion? Then we need individual scores. The idea of an individual
score is to map an individual onto a latent random variable.1 In

psychological research, constructs derived from and well-
founded in psychological theory are often conceived of as latent
variables. For longitudinal research, latent variables are often
used to represent the “error free” construct at a given point in
time (e.g., in autoregressive models) or may represent model
parameters such as random intercepts or random slopes (e.g., in
mixed/multilevel or latent growth curve models). In the present
paper, we will focus on the former and will limit ourselves to
normally distributed latent variables. Main purposes of using
individual scores include individual diagnosis, monitoring or
prediction.

To illustrate the purpose of individual scores, let us consider
an example: imagine that there is a school district, which has
implemented its own monitoring system into the schools in
order to track the students’ negative emotionality as this is
known to affect school outcomes and dropout (e.g., Valiente,
Swanson, & Eisenberg, 2012). Such a monitoring may aim at
optimally fostering the students based on an individualized
education program and to provide interventions if necessary.
With latent growth curve or autoregressive models, we could
analyze the development of negative emotionality at the group
level of the students. But what if we are interested in the
trajectory of one particular student of this cohort, say, of
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Benni? To answer this question, a broad range of different
approaches to scoring individuals is available, which differ in
their statistical properties, and their choice should be carefully
considered.

PURPOSES OF THIS ARTICLE

The purposes of this article are twofold. First, we offer an
introduction to the topic of individual scores. This might, for
instance, be interesting for applied researchers and novices to
this topic. We aim at raising the awareness of issues that should
be consideredwhen deciding on the use of individual scores and
we want to put researchers in a position to make an informed
decision about the use and usefulness of individual scores. The
need to do so was already recognized decades ago by Horn
(1965), and by doing so, we will extend existing similar endea-
vors (e.g., DiStefano, Zhu,&Mindrila, 2009; Glass&Maguire,
1966) by adding a longitudinal perspective. Second, we would
like to stimulate further research in this field by pointing to
promising procedures that are less commonly used in psycho-
logical research. This might be interesting to researchers who
are already familiar with individual score approaches or who
conduct research in this area.

The structure of this article is as follows: we first introduce
the reader to the idea of individual scores and present selected
methods to compute them. Next, we provide an overview of
common criteria to evaluate individual score method perfor-
mance and summarize findings on the performance of the
selected methods in a longitudinal context. We then transfer
existing analytical results on the performance of individual
score methods to practical situations by means of an illustra-
tion based on simulated data. We end by discussing the use
and usefulness of individual scores in particular situations.

One of our primary motives for writing this article relies on
the observation that the sum score (sometimes also called
“total score” or “composite score”) continues being used,
very often in inappropriate situations, either as mere sum
score or as a variant of it, called item parcels (see Little,
Cunningham, Shahar, & Widaman, 2002; Meade &
Kroustalis, 2006; Nasser & Wisenbaker, 2003; Rhemtulla,
2016). Using sum scores, however, may be problematic
because inherent to their use are three sources of potentially
severe biases (e.g., Lastovicka & Thamodaran, 1991): first, it
is implicitly assumed that the itemsmeasure a single construct
(i.e., unidimensionality), second, it is ignored that one item
may be more closely related to the underlying construct than
another, and third, the amount of error due to unreliable
measurement and the true score part that both compose the
observed score cannot be disentangled. Thus, it is unknown
how much we can “trust” the sum score. As approaches that
make those assumptions more explicit and that account for the
shortcomings of the sum score, we present the regression
method (Thomson, 1938; Thurstone, 1934), the Bartlett

method2 (Bartlett, 1937), and the Kalman filter (Kalman,
1960). In contrast to the regression and the Bartlett method,
the Kalman filter is less well known in psychological research.
It is adopted from the field of engineering, where one also
encounters the ‘problem’ of optimizing individual scores (see
Priestley & Subba Rao, 1975 for the connection between
Kalman filtering and factor analysis). Originally, it was devel-
oped to improve the tracking of systems (e.g., rockets in
space) while integrating new data (e.g., on the rocket’s actual
position, velocity or direction). For this reason, the Kalman
filter is called an “online” estimator. Along with the Kalman
filter comes the Kalman smoother, which ‘smoothes’ back in
time. In contrast to the Kalman filter, the Kalman smoother
also uses information from future time points to optimally
estimate an individual score at earlier time points. As the
Kalman smoother is usually employed when the data collec-
tion is finished, it is called an “offline” estimator. For instance,
if there are two measurement occasions, data from the second
time point are used to estimate an individual score at the first
time point. Thus, every individual score estimate at previous
time points may change to the degree that data from a new
measurement become available. In earlier research (e.g.,
Dolan & Molenaar, 1991; Oud, Jansen, van Leeuwe,
Aarnoutse, & Voeten, 1999), it has been shown that the
Kalman smoother can be formulated as a special case of the
regression method. For this reason, we do not consider the
Kalman smoother in the following. With this mixture of
different approaches, we seek to open the reader’s awareness
about alternatives and about the statistical properties they
have, while acknowledging that different methods may be
differently useful in a given context.

WHAT IS AN INDIVIDUAL SCORE? – A FORMAL
ANSWER

For the purpose of the present paper, we define an individual
score as a realization of a normally distributed random latent
variable that conceptually represents a psychological con-
struct. So, let any construct (e.g., any competencies, depres-
sion, positive/negative affect, etc.) be measured by
i ¼ 1; . . . ; I multiple indicators (synonym: items), for which
we can observe responses yi. Further, let c ¼ 1; . . . ;C be the
latent variables representing the constructs of interest. Each of
the j ¼ 1; . . . ; J individuals has values on these latent vari-
ables, so-called true scores, that are contained in the vector f j.

As f j cannot be directly observed, individual scores f̂ j need to
be obtained by means of a statistical method.

There are several ways to map the observable responses

yj onto an individual’s score f̂ j and there exists a

2 The regression method is also referred to as empirical Bayes estimate
and individual scores based on the Bartlett method are maximum like-
lihood estimates (see Skrondal & Rabe-Hesketh, 2004).
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controversy (e.g., Bartholomew, 1987) whether to conceive
of this “act” of assigning values to latent variables as
“prediction of a random variable” or as “estimation of a
realized value of a random variable” (Robinson, 1991, p.
28). We will not take a stance at this discussion. In line with
most of the research conducted in this field, we will use
“estimation”. This choice also facilitates to distinguish the
estimation of individual scores (i.e., the act of assigning
values on latent variables to persons) from the prediction of
individual scores in the future. From this perspective, indi-
vidual scores are not an immediate result of model estima-
tion but require a second step after model estimation.

HOW CAN WE OBTAIN INDIVIDUAL SCORES?

In general, approaches differ with regard to the type of
information they incorporate when computing the indivi-
dual scores and how this information is used. In this sec-
tion, we present four common approaches to obtain
individual scores and their standard errors: the sum score,
the regression method, the Bartlett method, and the Kalman
filter.

The simplest approach to obtain individual scores f̂ j is to
compute the sum score over the I indicators in order to
obtain C individual scores:

f̂SSj
C�1

¼ S0

C�I

� yj
I�1

; (1)

where f̂SSj denotes individual scores f̂ j obtained by com-
puting individual sum scores, and S is a selection matrix
that assigns a particular element in yj to the correspond-
ing construct it is supposed to measure. Readers who are
less familiar with matrix notation might better recognize
the computation of the sum score for a unidimensional

construct (i.e., C ¼ 1) from f̂SSj ¼
PI

i¼1 yij, where yij is
the response of individual j to item i. Note that as long as
there are no missing values, an individual’s sum score

and mean score as computed by f̂MSj ¼
f̂SSj
I for a unidi-

mensional construct are perfectly correlated. Without
relying on latent variable model parameters, we can
calculate the standard error for the sum score according
to sffiffi

I
p , where s is the standard deviation of the sum

scores in a sample. This is in fact the standard error of
a test’s mean but adapted to the individual. The basic
“ingredient” (or unit) of this test’s mean are individual
sum scores (or mean scores, respectively) in classical test
theory; taking this standard error just transfers the idea of
capturing random fluctuations for the mean to individual
sum scores while assuming a constant standard error
across individuals. Alternatively, the standard error of

measurement according to s � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RelðyÞp

could be

used, where RelðyÞ is the reliability of this test; however,
this strongly depends on the method itself to compute
reliability.

Unlike the sum score, the regression method, the Bartlett
method as well as the Kalman filter are based upon para-
meters estimated within a latent variable framework. When
conceiving of our construct of interest as a latent variable
(e.g., a factor), observable responses yj to the manifest
items are commonly linked to the underlying latent factor
f j by

yj
I�1

¼ ν
I�1

þ Λ
I�C

� f j
C�1

þ εj
I�1

; (2)

where yj is a vector of manifest variables for person j, ν
contains the intercepts, Λ is the loading matrix connecting
manifest and latent variables f j and errors εj in the mea-
surement model, with εj,N 0;Θð Þ. If, in addition, relations
among the latent variables are postulated, those can be
expressed by

f j ¼
C�1

α þ
C�1

A �
C�C

f j þ
C�1

ζj

C�1

; (3)

where α contains the intercepts, A contains the structural
coefficients and ζj,N 0;Ψð Þ. By having f j both on the left
handside and on the right handside of the equation,
Equation (3) thus relates the latent variables in a model
with each other.

Further, we need to consider that the variance-covar-
iance matrix of the latent variables may not be equal to
the variance-covariance matrix of individual scores, that is,

E f̂ � f
� �

f̂ � f
� �0h i

> 0 (e.g., Skrondal & Laake, 2001).

Usually, this difference is referred to as “estimation” or
“prediction” error of individual scores. In order to be in
line with the term “individual score estimates” as used
before, we will consequently use “individual score estima-
tion error” here. For approaches, which incorporate a latent
variable model (i.e., the regression and the Bartlett method
as well as the Kalman filter), the principle of standard error
calculation for individual scores is to take the square root of
the diagonal elements of the estimation error variance-cov-

ariance matrix P ¼ E f̂ � f
� �

f̂ � f
� �0h i

(e.g., Oud, van den

Bercken, & Essers, 1990), with f̂ representing the indivi-
dual scores obtained by a particular method and f repre-
senting the true scores of the latent variables.

As an estimate of f the regression method (Thomson,
1938; Thurstone, 1934) provides us with

f̂Rj

C�1

¼ Φ
C�C

� Λ0
C�I

�Σ�1

I�I

� yj
I�1

(4)
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as individual score with Σ being the variance-covariance
matrix of the observed variables and Φ being the variance-
covariance matrix of the latent variables f. As a longitudi-
nal model ‘connects’ the latent variables over time, the Φ
matrix allows us to incorporate longitudinal information.
For the regression method,

PR

C�C

¼ Φ
C�C

� ð I
C�C

þ ðΛ0

C�I

� Θ�1

I�I

� Λ
I�C

Þ � Φ
C�C

Þ�1 (5)

(Lawley & Maxwell, 1971, p. 109). The square root of the
diagonal elements are used as standard errors for the indi-
vidual scores. Two things become obvious here: first, rely-
ing on matrix algebra facilitates to recognize which model
parameters are used to weigh the observed responses in yj
and, thus, to compute individual score estimates. Second,
we notice that we can compute individual score estimates
as soon as measurement and structural model parameter
estimates are available. For this, it does not matter how
those were estimated, for instance, either within the struc-
tural equation modeling (SEM) framework or within the
state space modeling framework (see Chow, Ho, Hamaker,
& Dolan, 2010, as well as Hunter, 2017, for a comparison
of the two).

The Bartlett method (Bartlett, 1937) is defined by

f̂Bj

C�1

¼ ðΛ0
C�I

�Θ�1

I�I

� Λ
I�C

Þ�1 � Λ0
C�I

�Θ�1

I�I
� yj

I�1

: (6)

In contrast to the regression method, only the measurement
model components Λ and Θ enter the computation. The Φ
matrix, whose elements include the structural information,
is not part of the equation. For the Bartlett method

PB
C�C

¼ ðΛ0
C�I

�Θ�1

I�I
� Λ

I�C
Þ�1 (7)

(Lawley & Maxwell, 1971, p. 110), where the square root
of the diagonal elements are used as standard errors for the
individual scores.

An inherently longitudinal approach is the Kalman filter
(Kalman, 1960). Its main idea is to improve estimation by
integrating new incoming information in addition to the
prediction based on past information. Transferring this idea
to our initial example of tracking Benni’s negative emotion-
ality, we could first make model-based predictions and then
compare this prediction with the actual measurement of his
negative emotionality as soon as we collect the new data (for
an application of the Kalman filter to students’ development
of decoding speed, see Oud et al., 1999). Thus, the principle
of the Kalman filter is to optimally combine a model-based
prediction with the arrival of new data from measurement in
two steps. In the first step (prediction step), the individual
score f̂KF at a time point t is predicted by the individual score
at the previous time point t � 1 yielding

f̂KFj;tjt�1

C�1

¼ α
C�1

þ A
C�C

� f̂KFj;t�1jt�1

C�1

; (8)

where α contains intercepts and A denotes the transition

matrix, which connects f̂ over time. A reflects the strength
of the relationship between adjacent measurement occa-
sions: the closer the absolute values in A are to one, the

stronger the relationship and the better the prediction of f̂ at

time point t by f̂ at t � 1.3 This part corresponds to the
structural part of a model in the SEM framework. The
amount of uncertainty inherent in the prediction step is

PKFtjt�1

C�C

¼ A
C�C

�PKFt�1jt�1

C�C

� A0

C�C

þΨt�1jt�1

C�C

: (9)

Note that the index for the time point in the Kalman filter-
ing approach goes from t ¼ 2 to T , where T denotes the
total number of measurement occasions. As the Kalman
filter is a recursive procedure, it requires to specify initial

values for f̂KF1j1 and PKF1j1 . We used t ¼ 1 to denote the
initial time point and thereby refer to the first measurement
occasion. Basically, a researcher can either arbitrarily set

values for f̂KF1j1 and PKF1j1 to initialize the Kalman filter or
make an “educated guess”, for instance by inserting corre-
sponding estimates from alternative individual score
approaches (for an in-depth study of different initialization
conditions, see Losardo, 2012). The choice of initialization
was analytically shown to have an impact on the statistical
properties of the Kalman filter results (Oud et al., 1999).

With the arrival of data from the new measurement at
time point t the prediction from time point t � 1 is updated
(update step) according to

f̂KFj;tjt
C�1

¼ f̂KFj;tjt�1

C�1

þKtjt
C�I

�ðyjt
I�1

� ŷj;tjt�1
I�1

Þ; (10)

with ŷj;tjt�1 being the responses predicted by

Λ� f̂KFj;tjt�1
þ ν.

For the variance-covariance matrix of the Kalman esti-
mation errors we get

PKFtjt
C�C

¼ ð I
C�C

�Ktjt
C�I

� Λ
I�C

Þ � PKFtjt�1

C�C

(11)

with Kalman gain

3Note that the Kalman filter is part of the model parameter estimation
in the state space modeling framework. Chow et al. (2010) as well as Oud
et al. (1990) show that the state space framework is closely related to the
structural equation modeling framework if a longitudinal model with
autoregressive structure is postulated. In this paper, we restrict the
Kalman filtering approach as used here to the estimation of individual
scores, but it can also be used to estimate model parameters.
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Ktjt
C�I

¼ PKFtjt�1

C�C

� Λ0
C�I

� ð Λ
I�C

�PKFtjt�1

C�C

� Λ0
C�I

þΘ0
I�I

Þ�1

(12)

The Kalman gain determines how strongly the new mea-
surement is weighted as compared to the prediction based
on the previous time point. If the new measurement is
rather unreliable, that is, has large error variances in Θ in

the measurement model, the update of f̂KFj;tjt and PKFtjt is
more strongly driven by the prediction based on the pre-
vious time point. In contrast, if the new measurement is
reliable with small error variances in Θ, the measurement’s

contribution to the updates of f̂KFj;tjt and PKFtjt is more
strongly weighted.

Regarding the updated individual score f̂KFj;tjt , the differ-

ence yjt � ðΛ� f̂KFj;tjt�1
þ νÞ reflects a comparison of the

actual measurement yjt with the model-based predicted

measurement Λ� f̂KFj;tjt�1
þ ν. Weighted with the Kalman

gain (i.e., the reliability of the measurement), this differ-

ence adjusts (“updates”) the individual score f̂KFj;tjt�1
pre-

dicted from the previous time point.
Regarding the updated variance-covariance matrix PKFtjt ,

the term I�Ktjt � Λ decreases as the reliability of the new
measurement increases. As a consequence, the impact of
the model-based predicted variance-covariance matrix
PKFtjt�1

on PKFtjt is downweighted the more reliable the
new measurement is. The square root of the diagonal ele-
ments of PKFtjt can then be used as standard errors to
construct confidence intervals around the Kalman filter
based individual scores.

HOW CAN WE CHOOSE AN INDIVIDUAL SCORE
METHOD?

After having introduced different methods for individual
score estimation, we now turn to the question of how to
choose between them. In the following, we present criteria
that were used in prior research to evaluate the performance
of the individual score methods.

Strength of the relationship between the estimated indi-
vidual score f̂ j and the true score f j. In previous research,
this criterion takes different forms. In its most general form,

it is defined as Eðf̂f 0Þ ¼ E ff 0ð Þ ¼ Φ (see Oud et al., 1990).
That is, the covariances between the individual scores and
the true scores are assumed to reflect the covariances
between the true scores. If latent variables are standardized

and assumed to be uncorrelated, then Eðf̂f 0Þ ¼ E ff 0ð Þ ¼ I.

This special case is also referred to as univocality (Grice,
2001; Grice & Harris, 1998). Standardizing all variables

and considering only the diagonal elements of Eðf̂f ') gives
us the correlations rf̂ f . These correlations are sometimes

presented as an index of reliability (e.g., Estabrook &
Neale, 2013), sometimes as an index of validity (Grice,
2001; Heise & Bohrnstedt, 1970; Susmilch & Johnson,
1975). This index describes how well the relative position-
ing of individuals based on their true scores is maintained
by individual score estimates. It is important to note that in
latent variable modeling, individual scores are per se inde-
terminate as the number of unknown pieces of information
due to unique (the residuals ε) and common latent variables
(f) exceeds the number of available pieces of information
(i.e., the observed items). This problem is usually referred
to as indeterminacy of individual scores, and different
indices of indeterminacy exist (e.g., Acito & Anderson,

1986). In simulation studies, ðrf f̂ RÞ
2 provides information

on the “actual squared multiple correlation” (Acito &
Anderson, 1986, p. 115). For a researcher who wants to
compare individuals with each other based on their scores,
an individual score method which has high correlations
between individual score estimates and true scores appears
suitable. What this criterion does not take into account is

the absolute correspondence of each f̂j with its true value fj,
which is accomplished by the next criterion: the bias.

Bias. The bias is the expected difference between an

individual score estimate and the true score, E
�
f̂j
�� fj. In

our simulation, it is calculated for each person j’s individual

score as 1
Nr

PNr
r¼1ðf̂jr � fjÞ, where r ¼ 1; . . . ;Nr denotes the

number of replications in the simulation. This property of
an individual score method is particularly relevant if indi-
vidual scores are used for diagnostic purposes. This might
be the case, for instance, if there is an absolute threshold
value, which determines whether a subject is eligible for
additional support measures. When the goal is to make a
decision about any given individual, methods that yield
small bias are desirable.

Variance. The variance of an individual score estimate is

defined as VARðf̂jÞ ¼ E
h

f̂ j � Eðf̂ jÞ
� �

f̂ j � Eðf̂ jÞ
� �0i

. It indi-
cates the variability of an estimator due to random sampling
error. In a simulation study, the variance can be captured by

the variance or standard deviation of a particular score f̂j over

the number of replications: VARðf̂jÞ ¼ 1
Nr�1

PNr
r¼1 ðf̂jr � f̂jÞ2 or

as SDðf̂jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARðf̂jÞ

q
, respectively. If we further assume that

Eðf̂jÞ ¼ f̂j ¼ fj, we can also calculate the variance as

VARðf̂jÞ ¼ 1
Nr

PNr
r¼1 ðf̂jr � f̂jÞ2. The precision of an estimate

is simply a transformation of the variance according to
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precðf̂jÞ ¼ 1
VARðf̂jÞ . In general, individual score methods that

yield very precise scores are desirable. That means that if we
were able to repeat the analysis for the same subjects, we
would obtain nearly identical individual scores based on a
method with high precision.

Mean squared error ðMSEÞ. This criterion equals the
averaged squared difference between a subject j’s indivi-
dual score and the corresponding true score,

MSEðf̂jÞ ¼ E ðf̂j � fjÞ2
h i

. In a simulation study, the MSE

can be calculated by 1
Nr�1

PNr
r¼1 ðf̂jr � fjÞ2. It is also common

to take the square root of the MSE, denoted as root mean

squared error ðRMSEÞ with RMSE ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
, which com-

bines bias and precision. If there is no bias, the MSE is
equal to the variance of the individual score of subject j. In
practice, there is usually a trade-off between bias and pre-
cision (see Geman, Bienenstock, & Doursat, 1992 for an
illustration of the bias/variance dilemma). In a recent study,
Curran, Cole, Bauer, Hussong, and Gottfredson (2016) used
the RMSE to investigate individual score method quality in
models that include background variables.

Structure preservation. Finally, another common cri-
terion is the degree to which individual score methods
are structure preserving, sometimes also called correla-
tion preserving in case of standardized variables (e.g.,
Oud et al., 1990; Saris, de Pijper, & Mulder, 1978); that
is, the degree to which they satisfy the constraint

Eðf̂ f̂ 0Þ ¼ E ff 0ð Þ ¼ Φ. A special case often considered
for standardized variables in exploratory factor analysis
(EFA) is Eðf̂ f̂ 0Þ ¼ E ff 0ð Þ ¼ I, which is then called ortho-
gonality. The criterion of structure preservation is often
indirectly applied, for instance, when the focus is on the
use of individual scores to further investigate structural
relationships between latent variables (e.g., Devlieger,
Mayer, & Rosseel, 2016; Skrondal & Laake, 2001). In
this case, statistical properties of structural coefficients
(e.g., regression coefficients) obtained from analyses
based on individual scores are of focal interest, for

instance, the degree to which f� ¼ Âf� þ ζ is equivalent

to f ¼ Af þ ζ. Here, f� denotes the estimate f̂ as
obtained in a first step. In a second step, structural

coefficients in Â are estimated based on f�, where f� is
taken as fixed; ζ contains the error terms. In this line of

research, the question is how well Â matches A across
different individual score methods. It is obvious that for
this purpose the structure preserving property in the first
step is of prime importance.

Depending on the framework of analysis (e.g., EFA vs.
theoretically derived models with structural components
accounting for the longitudinal structure), these criteria are
differently important. Traditionally, most of them were applied

within an EFA framework. In contrast, longitudinal modeling
requires imposing constraints on the measurement models to
ensure measurement invariance as well as making explicit
assumptions of how different measurements are related over
time (e.g., linearly or quadratic, etc.). As a consequence, the
mapping of manifest onto latent variables (via measurement
models) and the relationship among the latent variables (via the
structural model) need to be explicitly specified. Therefore,
criteria to be considered in a longitudinal context primarily
include bias, precision, MSE, and rf̂ f rather than structure pre-
servation or univocality. Next, we will turn to what we know
from previous research about the use of individual scores in
longitudinal contexts.

WHAT DO WE KNOW ABOUT THE USE AND
PERFORMANCE OF INDIVIDUAL SCORE

METHODS IN PSYCHOLOGICAL LONGITUDINAL
STUDIES?

Only little is known about the performance of individual
scores in longitudinal psychological studies. Seminal
works for the J ¼ 1 case were conducted for instance
by Molenaar (1985), or, for the panel case with J > 1,
by Oud et al. (1990, 1999). Besides a comprehensive
introduction to Kalman filtering, the authors of the latter
studies analytically derive properties of individual
scores based on the regression method, the Bartlett
method, and the Kalman filter. Building upon Lawley
and Maxwell (1971), they show that the regression
method yields biased scores but with minimum var-
iance, whereas the Bartlett method leads to unbiased
individual scores but with a larger variance. The
Kalman filter is considered an optimal estimator, but
its performance depends on the initialization method.
In case of an initialization method that is optimal in
terms of unbiasedness and minimum variance, the
Kalman filter would yield optimal scores without any
restriction. In practice, however, such a generally opti-
mal initialization does not exist. Accordingly, properties
of the Kalman filter scores first depend on the initializa-
tion until they “forget” about the initialization when
time passes and new data arrive (e.g., Visser &
Molenaar, 1988). Oud et al. (1999) showed that the
Kalman filter has minimum variance already at t ¼ 2,
even though the Kalman filter was initialized with the
Bartlett estimator at t ¼ 1 which does not have mini-
mum variance. This is true for most situations except in
the case that the Bartlett estimator is based on extre-
mely large error variances in the measurement model.
Having discussed the asymptotic performance of the
Kalman filter, the regression and the Bartlett method,
we now turn to the question of how analytically derived
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asymptotic properties translate into finite sample
scenarios.

ILLUSTRATION USING SIMULATED DATA

We illustrate the properties of the previously presented indi-
vidual score methods by means of simulated data for our
fictitious example of Benni as introduced at the beginning.
We consciously decided against an empirical example as the
computation of individual scores itself can be easily done as
soon as we estimated a model. Simulated data allow us to
measure the extent to which individual scores obtained by
different methods match the true values. Although asymptotic
performance has been derived analytically as discussed
before, Monte Carlo simulations open the door to study rea-
listic scenarios and to investigate practical implications. For
instance, we learned from analytical derivations that indivi-
dual scores based on the regression method do have minimum
variance but are biased, that the Bartlett method yields indi-
vidual scores that have minimum variance among all
approaches which are unbiased (Lawley & Maxwell, 1971),
and that the Kalman filter forgets about its initialization and
quickly becomes the approach with minimum variance. But
what does this mean for finite samples and, in particular, for
specific individuals within a sample and their individual tra-
jectories? How well does an individual score obtained by a
particular method match the underlying true score when there
are differently reliable measurements or differently persistent
processes as it is often the case in typical psychological
applications?

PROCEDURE

The simulation had three steps: data generation, model estima-
tion, and computation of individual scores. These three steps
were replicatedNr ¼ 500 times per condition.Data generation
and the estimated model were identical in all conditions. The
rationale behind this procedure is that plugging model para-
meter estimates into formulas for individual scores relies on
the assumption that the estimated parameters are valid for the
whole sample. In practice, we would first postulate a model
based on substantive theory, then estimate the model para-
meters and finally interpret the model results only if the
postulated model sufficiently fits the empirical data. In case
of a valid model we can proceed to compute individual scores
in a very last step, based on the estimatedmodel parameters for
each data set according to the methods presented before.
Thereby, the computation of individual scores is independent
of the model parameter estimation. We summarized these
measures over replications and per condition and analyzed
them with respect to the outcome criteria described later. All
analyses were conducted using the software R (R Core Team,

2017). Model estimation was carried out using the package
OpenMx (Boker et al., 2011; Neale et al., 2016), individual
scores were computed with our own routines. In the online
supplemental material, we provide example code for data
generation according to the model described next, for model
estimation, and for obtaining individual scores using lavaan
(Rosseel, 2012), OpenMx (Boker et al., 2011; Neale et al.,
2016), and Mplus (Muthén & Muthén, 2017).

MODEL

Back to our hypothetical scenario, we assume that Benni is
part of a cohort that comprises J ¼ 200 elementary school
students whose negative emotionality is assessed on T ¼ 5
time points during a school year with equidistant time
intervals. We account for the longitudinal structure by
using an autoregressive model of order one, AR(1), which
connects negative emotionality at adjacent time points by

fjt ¼ a � fj;t�1 þ ζjt (13)

with ζjt having variance Ψt. We assume that the relation-
ships between adjacent measurements are constant over
time by imposing equality constraints on the autoregression
coefficients such that a½t; t � 1� ¼ a, and we further assume
that the process is stationary (for the concept of stationarity,
see e.g., Hamilton, 1994, pp. 45–46). Equation (13) thus
describes the generation of a subject j’s “true trajectory”
(based on “true scores” at every t).

Further, in our hypothetical scenario, negative emotionality
is a latent construct that is measured by I ¼ 5 manifest indica-
tors. For this reason, a measurement model according to
Equation (2) is additionally incorporated in the data generation.
Assuming that negative emotionality is measuredwith the same
instrument (i.e., the samemanifest indicators) at everymeasure-
ment occasion, we constrain the loadings as well as the error
variances in the measurement models to be equal over time for
each indicator (e.g., the entries λit in the Λ matrix reduce to λi,
and VARðεitÞ inΘ are constrained to VARðεiÞ). We thus estab-
lishmeasurement invariance over time and ensure that the latent
variable is on the same scale at different time points. All vari-
ables are standardized and the initial variance of f is constrained
to one for reasons of scaling and model identification. Figure 1
depicts a conceptual path diagram of the model that was used
for data generation and model estimation.

DESIGN

We experimentally varied model parameters in both the mea-
surement part (λi and VARðεiÞ) and in the structural part of
the autoregressive model (autoregression coefficient a) to
study their effects on individual scores. In the measurement
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part, we chose the loadings for our five observable indicators
in such a way that their mean was either 0.6 (“reliability 1”
condition) or 0.8 (“reliability 2” condition). As standardized
items have a variance of 1, a loading of 0.6 corresponds to
64% (1� 0:62 ¼ 0:64) residual variance in this item and a
loading of 0.8 corresponds to 36% residual variance in this
item. Further, we varied the variation in the loadings (0 vs.
0.13). In conditions with a variance of 0.13, loadings were
chosen in such a way that they were symmetric around the
mean. We expect that variation in loadings has an impact on
the performance of the individual mean score as this method
equally weighs all items and therefore ignores any variance in
the loadings. In the structural part of the model, the magni-
tude of the autoregression coefficient a was either 0.25 or
0.75 representing different degrees of persistence. With
regard to our initial example, a low a coefficient indicates
lack of persistence in the sense that negative emotionality at
one time point is not predictive for negative emotionality at a
subsequent time point. In contrast, a high a coefficient indi-
cates persistence, that is, negative emotionality at one time
point is highly predictive for negative emotionality at the next
time point. Table 1 summarizes the conditions.

With this illustrative simulation, our goal is to assess how
individual score methods behave when we pretend that we
could take one and the same sample of subjects and test it
repeatedly under different conditions. What varies then is the
error in the measurement model, not the true trajectories of the
individuals, except when we change structural components.
That is,wefirst draw a value (true score) froma standard normal
distribution for each individual. Then, for a given autoregressive
coefficient a, we compute their true trajectory. We only do so
once for each a-condition and keep the true trajectories constant
over all the other conditions and over replications given a
particular a. We thus repeatedly ‘expose’ our sample to differ-
ently reliable measurements by manipulating parameters in the
measurement model (see Table 1), and we do so for two sets of
conditions resulting from two differently persistent processes
(a ¼ 0:25 and a ¼ 0:75). As the generation of true trajectories
only requires a structural model but no measurement model, it

becomes obvious that we obtain two sets of true scores for the
200 subjects, one set for the a ¼ 0:25 conditions and one set for
the a ¼ 0:75 conditions. In total, we thus have 2 � 200 ¼ 400
unique individuals. Using the same seed, we obtain the same
true scores at t ¼ 1 for the two a-conditions. Because of the
different autoregression coefficients a, we obtain different true
scores for t > 1. Therefore, Benni, who only is Benni as defined
by his unique individual trajectory, can only be Benni in
repeated testing under differently reliable measurement condi-
tions, but not in the presence of a differently persistent negative
emotionality.

COMPUTATION OF INDIVIDUAL SCORES

We computed individual scores according to four of the pre-
viously presented approaches (abbreviations as used in the
presentation of the results are given in parentheses): the regres-
sion method (Regression), the Bartlett method (Bartlett), the
individual mean score (MeanScore)4 and three versions of the
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FIGURE 1 Conceptual path diagram of an autoregressive model of order one, five observed indicators and measurement invariance assumed.

TABLE 1
Overview of Conditions: Variation in Loadings for Each Set of

Persistence Conditions (a ¼ 0:25 and a ¼ 0:75)

Condition λ1 λ2 λ3 λ4 λ5 Mλ SDλ

Reliability 1:
M06,SD000 0.60 0.60 0.60 0.60 0.60 0.60 0.00
M06,SD013 0.60 0.45 0.55 0.65 0.75 0.60 0.13
Reliability 2:
M08,SD000 0.80 0.80 0.80 0.80 0.80 0.80 0.00
M08,SD013 0.80 0.65 0.75 0.85 0.95 0.80 0.13

Note. Condition labels are concatenated means and standard deviations
of the loadings.

4 Note that we use the individual mean score here rather than an
individual sum score in order not to change the metric of the responses
that was used in the data generation. Otherwise, this metric would be
altered by each item that additionally enters the sum score, thus, sum score
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Kalman filter. As the Kalman filter is a recursive procedure, it
requires initialization. We included three different ways of
initialization: first, random initialization by drawing values
from a uniform distribution characterized by the minimum
and by the maximum of the observed data (KF). The variance
of the Kalman estimation error was set to 0.5 for initialization.
We chose this large value to assess the performance of the
Kalman filter under particularly unfavorable conditions.
Second,we used individual scores and estimation error obtained
from the regression method for the first time point to initialize
the Kalman filter (KFiniR). Third, we used individual scores
and estimation error obtained with the Bartlett method to initi-
alize the Kalman filter (KFiniB). The computation of individual
scores according to all methods but the mean score required the
incorporation ofmodel parameters as estimated beforehand.We
constructed 95% confidence intervals around the individual
scores using the standard errors as described above.

OUTCOME CRITERIA

For our study, we rely on criteria that provide information of
individual score method performance on the subject level as
opposed to aggregate performance indices such as structure
preservation. To start analyses on the individual level, we first
inspect correlations between a particular individual score
method and the corresponding true scores. For each replication,
we first calculated Pearson’s product-moment correlation coef-
ficient r, then Fisher-Z-transformed these correlations, averaged
them, and transformed them back into r in order to facilitate
interpretation. This criterion provides information on the rela-
tive ordering of the individuals. Avalue of 1 indicates a perfect
correlation, that is, the positioning of an individual relative to
another one is perfectly maintained by the estimate. In a next
step, we shift the focus from the relative positioning of subjects
to the absolute match of a score obtained by different methods
with the true score. In order to scrutinize in how far the deviation
of an individual score from the underlying true score is relevant
in practical situations, we additionally incorporated a criterion
based on 95% confidence intervals. For each replication, we
first calculated dichotomous indicators which indicate whether
the confidence interval of an individual score captured the true
score (score 1) or not (score 0) per person, and per time point.

We call this themismatch criterion, with d ¼ 1 “mismatch”

0 “match”

�
.

Then we calculated the percentage of “mismatches” over repli-
cations for each condition. This criterion can be considered as a
“reversed coverage” as commonly used in simulation studies. It
indicates in how many replications a parameter estimate is not
included in the corresponding confidence interval. The

mismatch criterion borrows from real data situations by con-
structing a confidence interval around the individual scores per
replication according to the formulas presented before. Then,
the percentage of how many times over replications this con-
fidence interval did not capture the true score is computed. We
introduced the proposed terminology to facilitate a substantive
interpretation in linewith the focus of this article. Themismatch
criterion thus reflects the amount of practical “mismatch” or
“misclassification” that could occur in the simulated scenarios
beyond the expected error probability of 5%. However, it is
obvious that a large individual score estimation error, and, thus,
wide confidence intervals, can mask bias; one should be aware
of this interrelationship. Nevertheless, applying the mismatch
criterion comes for the benefit of practical relevance and prac-
tical meaningfulness. Unlike all the other criteria we presented
before, this outcome relates to practical situations as closely as
possible. In contrast, the MSE, for instance, combines the cri-
teria of bias and variance, but we do not know the threshold
value ofwhen an individual scoremethodwith a particularMSE
leads to a different individual decision in practical settings. This
is only accomplished by the mismatch criterion as it incorpo-
rates the individual score estimation error, which is the basis for
obtaining standard errors to construct confidence intervals
around the point estimate of an individual score. For this reason,
we will first take a closer look at the standard errors of the
individual score methods to build a sense of the precision of our
individual score methods. To illustrate the mismatch criterion,
Figure 2 shows the trajectories of different individual score
methods for two exemplary individuals, Benni and Jacky. If
Benni comes from a population whose negative emotionality is
rather non-persistent (a ¼ 0:25 conditions), the subfigure on
the left describes his trajectory while being exposed to a mea-
surement of a given quality. On the right, the trajectory of Jacky
is shown. Jacky stems from a different population, a population
whose negative emotionality is described by a persistent process
with a ¼ 0:75. Jacky has the same true score at t ¼ 1 but
different true scores at each t > 1. This figure makes two of
our outcome criteria evident: the width of the confidence inter-
vals around the individual scores as determined by the standard
errors and whether individual score plus confidence interval
capture the true score or not.

RESULTS

The performance of individual score methods is evaluated in
terms of their capability to maintain the relative ordering of
individuals (correlation criterion) and in terms of whether the
individual score confidence interval captures the true score or
not (mismatch criterion). As the findings are very similar across
time for each individual scoremethod,we only report the results
for t ¼ 4 for the correlation criterion (Table 2) and for the
standard errors (Table 3), which are related to the mismatch
criterion. Figures showing the full results can be found in the

inherent bias and bias due to a different metric would be confounded. As
noted before, the mean perfectly correlates with the sum score when I is
constant for all individuals as it is the case in our illustrative simulation.
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Online supplemental material. In those figures, it becomes
obvious that the impact of a random initialization of the

Kalman filter has died out at t ¼ 4 (at the latest) in every
condition. Further, at t ¼ 4, the regression method can still
exploit information from future time points. The correlation
and the mismatch criterion indicate three main results: first, all
methods perform much better in reliability 2 conditions than in
reliability 1 conditions. Second, if the process is persistent (i.e.,
a ¼ 0:75 conditions), the randomly initialized Kalman filter
(KF) takes 1-2 time points more than in case of a non-persistent
process until its initialization impact has died out. Third, varia-
tion in the loadings (as indicated by SD013-conditions) leads to
better performance (as compared to SD000-conditions) for all
methods except the mean score. This effect is due to the mean
score ignoring any differences in the strength of the relationship
between the items and the latent variable (i.e., the loadings). In
contrast, all methods that account for the loading structure
differently weigh the corresponding responses. Responses to
items that have high loadings are more strongly weighted such
that the corresponding individual score estimate is more
strongly determined by these responses. Especially in the relia-
bility 2 conditions there is at least one response to an item with
smallmeasurement error. This response almostmatches the true
score and is most strongly weighted by the corresponding load-
ing. As a consequence, individual scores obtained by methods
that account for loadings are hardly contaminated by responses
to items with large measurement error because the correspond-
ingly small loadings downweigh these responses. Closer
inspection of the correlation criterion (see Table 2) reveals that
in case of a non-persistent process (i.e., a ¼ 0:25 conditions),
the only difference we can observe is the lower performance of
the individual mean score when there is variation in the load-
ings. This is due to the equal weighing of the responses. In this
situation, the relative ordering of the individuals is almost
equally well maintained independent of which individual
score method we choose. In contrast, if the process is persistent
(i.e., a ¼ 0:75 conditions), we observe a better relative posi-
tioning of individuals for methods that incorporate longitudinal
information (i.e., the regression method and the Kalman filter
versions). Inspecting the mismatch criterion in more detail
further reveals that the individual score interval based on the
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FIGURE 2 True = true score, KF = Kalman filter, KF.B = KFiniB, KF.R = KFiniR, R = Regression, B = Bartlett, MS = MeanScore. Exemplary trajectories
of the true score and estimated scores by method for the M06,SD000 condition, for Benni (left panel) and Jacky (right panel).

TABLE 2
Correlation between Individual Scores and True Scores at t = 4 by

Individual Score Method and Condition

Condition Regression Bartlett MeanScore KF KFiniR KFiniB

a ¼ 0:25
M06,SD000 0:864 0:858 0:858 0:862 0:862 0:862
M06,SD013 0:878 0:873 0:859 0:876 0:876 0:876
M08,SD000 0:949 0:948 0:948 0:949 0:949 0:949
M08,SD013 0:970 0:969 0:949 0:969 0:969 0:969
a ¼ 0:75
M06,SD000 0:914 0:873 0:873 0:897 0:899 0:899
M06,SD013 0:922 0:887 0:874 0:908 0:909 0:909
M08,SD000 0:963 0:954 0:954 0:959 0:959 0:959
M08,SD013 0:977 0:973 0:955 0:975 0:975 0:975

Note. ‘M06’ in the condition labels refers to reliability 1 conditions,
‘M08’ refers to reliability 2 conditions. The correlation is close to zero for
the randomly initialized Kalman filter in every condition.

TABLE 3
Mean Individual Score Standard Errors at t = 4 by Individual Score

Method and Condition

Condition Regression Bartlett MeanScore KF KFiniR KFiniB

a ¼ 0:25
M06,SD000 0:485 0:577 0:311 0:488 0:488 0:488
M06,SD013 0:457 0:532 0:310 0:460 0:460 0:460
M08,SD000 0:304 0:324 0:374 0:305 0:305 0:305
M08,SD013 0:234 0:242 0:374 0:234 0:234 0:234
a ¼ 0:75
M06,SD000 0:425 0:586 0:326 0:457 0:456 0:456
M06,SD013 0:403 0:540 0:326 0:432 0:431 0:432
M08,SD000 0:280 0:326 0:398 0:292 0:292 0:292
M08,SD013 0:222 0:244 0:397 0:228 0:228 0:228

Note. ‘M06’ in the condition labels refers to reliability 1 conditions,
‘M08’ refers to reliability 2 conditions. KF was initialized with an estima-
tion error of 0:5. The table shows the mean standard error over replications
per condition. The SD of this standard error over replications is very small
(with a maximum of 0.026) and therefore negligible.
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Bartlett method most closely and consistently matches the
expected 5% across all conditions (see Figure 3 and the full
results table in the Online supplemental material). As this is the
average across persons within one condition, the comparatively
small standard deviation indicates that those 5% of mismatch
are true for most subjects in the sample. On average, the
regression method and the Kalman filter versions have slightly
higher mismatch rates with larger standard deviations (except
for the randomly initialized KF). This means that for many
individuals the individual score intervals of those methods do
not capture the true score and, thus, may for instance lead to
wrong individual diagnostic decisions. Further, we observe that
the mean score is very sensitive to reliability 1 conditions
having mismatch rates far beyond the expected 5%, that is,
when error in the measurement model is relatively large. In
this situation, the mean score and its confidence interval may
lead to wrong decisions. Thus, we have seen that the individual
score interval according to the Bartlett method most accurately
reflects the nominal confidence level (i.e., here 95%). To
develop a better understanding of the mismatch criterion, it is
alsoworthwhile to consider the standard errors (see Table 3). As
a reminder, standard errors as used here are calculated based on
the estimation error for theBartlett and the regressionmethod as
well as for the Kalman filter versions. For individual mean
scores, we use the standard error for a test’s mean but adapted
it to individuals as described before. As a first result we observe
that the standard errors for themean score are slightly smaller in
reliability 1 conditions than in reliability 2 conditions. As this
standard error is calculated based on the standard deviation of
the mean scores, we see here that in the presence of relatively
large amounts of measurement error (reliability 1 conditions),
the mean score is not capable of discriminating well between
persons. Further, for the remaining individual score methods,

we see that individual scoremethods benefit from incorporating
longitudinal information (Regression, KF, KFiniR and KFiniB)
with regard to their standard errors if the process is persistent
(a ¼ 0:75).With regard to our hypothetical scenario, it does not
make a huge difference which of the approaches we choose to
describe Benni’s trajectory as long as error in the measurement
model is not too large. If, in contrast, error in the measurement
model is rather large, we should be aware that we are more
likely to have a mismatch on the individual level especially
when using the mean score, but also when using the regression
method or the Kalman filter versions as compared to using the
Bartlett method. As we know from inspecting the standard
errors, this comes at the price of larger confidence intervals,
and, thus, more imprecise individual scores.

ON THE USE AND USEFULNESS OF INDIVIDUAL
SCORES

Individual scores are important whenever an individual
and his or her trajectory are of interest. Apart from the
practical example of Benni, a range of purposes is con-
ceivable, including monitoring, diagnosis, and prognosis.
For instance, individual scores can be used to track the
development of abilities or skills that are important in
education (e.g., decoding speed, reading comprehension,
etc.) or to monitor the progression of mental illnesses
such as depression in a clinical context. In the same
settings, when diagnostically relevant thresholds are
defined, individual scores allow us to determine whether
and when a subject reaches, exceeds or falls below such
a threshold or even when this will be the case in the
future (i.e., for prognosis). Such thresholds may stem
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from comparing an individual’s development to that of a
reference group or by theoretical knowledge. In all of the
simulated scenarios, there were no remarkable differ-
ences between the regression method, the Bartlett method
and the Kalman filter versions (except for the impact of
the random initialization of the KF). Even the individual
mean score showed good performance, at least in high
reliability conditions. However, the problem with the
individual mean score is that it inherently relies on
very strong, and oftentimes unrealistic assumptions
regarding unidimensionality, loadings, and measurement
error as explained above. In practice, those assumptions
are hardly ever met. In real data situations, we never
know the quality of our measurement unless we use
latent variable models. We first need to check those
assumptions before we can assess how much we can
trust a particular individual score method. Our little
illustrative simulation showed three main results: first,
relatively large error in the measurement model generally
leads to worse performance of individual score methods,
second, methods that include model parameters (all
methods but the mean score) benefit from variation in
the loadings, and third, in the presence of relatively large
measurement error, individual score methods perform
worse when the process is non-persistent and when
there is no variation in the loadings. Special caution
should be exercised in reliability 1 conditions which
exhibited the largest difference between methods.

In propensity score analysis, individual scores were
used to statistically adjust for differences between control
groups and intervention groups on fallible covariates
(Raykov, 2012). However, the validity of this approach
has been questioned (Lockwood & McCaffrey, 2016). In
how far the different statistical properties of different
individual score methods play a role in this context and
in how far the consideration of individual score estima-
tion error may add value to their usefulness in the bal-
ancing of groups remains an open question. Likewise,
individual scores may be useful in latent interaction
modeling (e.g., Kelava et al., 2011; Moosbrugger,
Schermelleh-Engel, & Klein, 1997). Modeling the non-
linear multivariate distribution directly is considered the
most recent, supreme approach in this context that out-
performs traditional product indicator approaches (e.g.,
Kelava et al., 2011). Schumacker (2002) showed that
individual scores are an easy-to-use alternative to product
indicator approaches although the particular individual
score method remains unmentioned as well as differential
performance of different individual score methods.
Whether and in which situations the use of individual
scores can be considered a valuable alternative to situa-
tions in which distribution analytic approaches reach
their limitations appears worthwhile to investigate (e.g.,
in small sample size situations).

When should we be cautious about the use of individual
scores or not even resort to individual scores? When we are
interested in structural parameters and when there is reason to
doubt that the proposed structure wewould like tomodel (e.g.,
regressive relationships between latent variables) validly
describes our data (i.e., when there is need to test a model).
One of the most valuable achievements of psychometric
research during the past decades is latent variable modeling.
Advances in latent variable modeling allow for a thorough
investigation of the model-data fit, while at the same time
being easy to use and available in nearly every mainstream
software (e.g., Mplus, lavaan, OpenMx, Stata, SAS, etc.).
When relying on individual scores to investigate structural
relationships instead (very often also referred to as factor
score regression), one runs into the danger of not discovering
lack of model-data fit and of suggesting a valid model inter-
pretation nonetheless. That said, in some selected and well-
defined situations individual scores have proven to be a valu-
able alternative to modeling directly within a latent variable
framework. To name a few examples, Hoshino and Bentler
(2013) acknowledge the bias of regression coefficients based
on individual scores and propose a correction method, with a
particular focus on manifest indicators with different scales
(e.g., categorical as well as continuous indicators). Building
upon the method of Croon (2002), Devlieger et al. (2016)
discuss a way to correct the bias of regression coefficients
obtained from factor score regression. Devlieger and Rosseel
(2017) extend this approach to path analysis. The main advan-
tage over SEM approaches can be seen in the performance of
this approach in small sample situations in terms of bias and
convergence. However, this approach is not suited to test
theoretically postulated structures among latent variables
and to explain structures in empirical data.

The property of testing structures in data appears important
for psychological research. How well a theoretical model fits
empirical data is in the focus of residual analysis, another field
of research in which individual scores have proven to be
useful. An individual residual can be considered just as an
individual: for each person, there are “true” unknown resi-
duals that can be approximated by individual score methods.
As many distributional assumptions of structural equation
models concern the residuals, obtaining individual residuals
allows for testing these assumptions and for conducting out-
lier and influential case analyses. In earlier studies, Bollen and
Arminger (1991) demonstrated the use of the regression and
the Bartlett method to conduct such analyses. More recently,
Hildreth (2013) investigated both asymptotic and finite sam-
ple properties of residuals obtained by the regression, the
Bartlett as well as the Anderson and Rubin method. In addi-
tion, Hildreth (2013) illustrates the use of residuals to identify
outliers and influential observations in SEM building upon
and extending the work by Bollen and Arminger (1991).
Future work might focus on the sensitivity of different indi-
vidual score methods to detect outliers and influential cases.
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